Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans.
نویسندگان
چکیده
We have previously reported that 5 days of a high-fat diet followed by 1 day of high-carbohydrate intake (Fat-adapt) increased rates of fat oxidation and decreased rates of muscle glycogenolysis during submaximal cycling compared with consumption of an isoenergetic high-carbohydrate diet (HCHO) for 6 days (Burke et al. J Appl Physiol 89: 2413-2421, 2000; Stellingwerff et al. Am J Physiol Endocrinol Metab 290: E380-E388, 2006). To determine potential mechanisms underlying shifts in substrate selection, eight trained subjects performed Fat-adapt and HCHO. On day 7, subjects performed 1-h cycling at 70% peak O2 uptake. Muscle biopsies were taken immediately before and after exercise. Resting muscle glycogen content was similar between treatments, but muscle triglyceride levels were higher after Fat-adapt (P < 0.05). Resting AMPK-alpha1 and -alpha2 activity was higher after Fat-adapt (P = 0.02 and P = 0.05, respectively), while the phosphorylation of AMPK's downstream target, acetyl-CoA carboxylase (pACC at Ser221), tended to be elevated after Fat-adapt (P = 0.09). Both the respiratory exchange ratio (P < 0.01) and muscle glycogen utilization (P < 0.05) were lower during exercise after Fat-adapt. Exercise increased AMPK-alpha1 activity after HCHO (P = 0.03) but not Fat-adapt. Exercise was associated with an increase in pACC at Ser221 for both dietary treatments (P < 0.05), with postexercise pACC Ser221 higher after Fat-adapt (P = 0.02). In conclusion, compared with HCHO, Fat-adapt increased resting muscle triglyceride stores and resting AMPK-alpha1 and -alpha2 activity. Fat-adapt also resulted in higher rates of whole body fat oxidation, reduced muscle glycogenolysis, and attenuated the exercise-induced rise in AMPK-alpha1 and AMPK-alpha2 activity compared with HCHO. Our results demonstrate that AMPK-alpha1 and AMPK-alpha2 activity and fuel selection in skeletal muscle in response to exercise can be manipulated by diet and/or the interactive effects of diet and exercise training.
منابع مشابه
Carbohydrate ingestion does not alter skeletal muscle AMPK signaling during exercise in humans.
There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKalpha2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKalpha2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine acti...
متن کاملIntensified exercise training does not alter AMPK signaling in human skeletal muscle.
The AMP-activated protein kinase (AMPK) cascade has been linked to many of the acute effects of exercise on skeletal muscle substrate metabolism, as well as to some of the chronic training-induced adaptations. We determined the effect of 3 wk of intensified training (HIT; 7 sessions of 8 x 5 min at 85% Vo2 peak) in skeletal muscle from well-trained athletes on AMPK responsiveness to exercise. R...
متن کاملProgressive increase in human skeletal muscle AMPK 2 activity and ACC phosphorylation during exercise
Stephens, T. J., Z.-P. Chen, B. J. Canny, B. J. Michell, B. E. Kemp, and G. K. McConell. Progressive increase in human skeletal muscle AMPK 2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282: E688–E694, 2002; 10.1152/ajpendo.00101.2001.—The effect of prolonged moderate-intensity exercise on human skeletal muscle AMP-activated protein kinase (AMPK) 1 and 2 acti...
متن کاملMalonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise.
Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H-CHO) or 2) a low-carbohydrate diet (L-CHO) before exercise to alter muscle glycogen content as well as to...
متن کاملEffect of AICAR treatment on glycogen metabolism in skeletal muscle.
AMP-activated protein kinase (AMPK) is proposed to stimulate fat and carbohydrate catabolism to maintain cellular energy status. Recent studies demonstrate that pharmacologic activation of AMPK and mutations in the enzyme are associated with elevated muscle glycogen content in vivo. Our purpose was to determine the mechanism for increased muscle glycogen associated with AMPK activity in vivo. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 105 5 شماره
صفحات -
تاریخ انتشار 2008